# **STAP** ### **Differential pressure controllers** DN 65-100, adjustable set-point and shut-off function ## STAP The flanged STAP is a high-performing differential pressure controller that keeps the differential pressure over the load constant. This delivers accurate and stable modulating control, ensures less risk of noise from control valves, and results in easy balancing and commissioning. STAP's unrivalled accuracy and compact size make it particularly suitable for use on the secondary side of heating and cooling systems. #### **Key features** #### > Adjustable set-point Delivers desired differential pressure ensuring accurate balancing. #### > Shut-off function Shut-off function makes maintenance easy and straightforward. #### > Measuring points Simplifies the balancing procedure, and increases its accuracy. #### **Technical description** #### **Application:** Heating and cooling systems. #### **Functions:** Differential pressure control Adjustable Δp Measuring points Shut-off #### Dimensions: DN 65-100 #### Pressure class: PN 16 #### Max. differential pressure (ΔpV): 350 kPa #### Setting range: 20\* - 80 kPa resp 40\* - 160 kPa. \*) Delivery setting #### Temperature: Max. working temperature: 120°C Min. working temperature: -10°C #### Media: Water or neutral fluids, water-glycol mixtures (0-57%). #### Material: Valve body: Cast iron EN-GJL-250 (GG 25) Bonnet: AMETAL® Cone: PTFE coated AMETAL® Spindles: AMETAL® O-rings: EPDM rubber Seat seal: Plug with EPDM O-ring Membrane: Reinforced EPDM rubber Spring: Stainless steel Handwheel: Polyamide AMETAL® is the dezincification resistant alloy of IMI Hydronic Engineering. #### **Surface treatment:** Valve body: Epoxy painting. #### Marking: Body: TA, PN 16, DN, CE, 250 CI, flow arrow and casting date (year, month, day). Bonnet and handwheel: Label with STAP, DN, ΔpL 20-80 resp 40-160 kPa and bar code. #### Face to face dimensions: ISO 5752 series 1, BS 2080 #### Flanges: ISO 7005-2. #### **Operating instruction** - 1. Setting ΔpL (5 mm allen key) - 2. Shut-off - 3. Connection capillary pipe, low pressure. - 4. Venting. Connection measuring point STAP. Connection capillary pipe, high pressure. - 5. Measuring point - 6. Opening/closing of measure signal for the low pressure side #### Measuring point Remove the cover and then insert the probe through the self-sealed measuring point. Measuring point STAP (accessory) can be connected to the venting if the STAF valve is out of reach when measuring the differential pressure. #### Capillary pipe When extending the capillary pipe, use e.g. 6 mm copper pipe and extension kit (accessory). Note! The supplied capillary pipe must be included. #### Installation **Note!** The STAP must be placed in the return pipe and with correct flow direction. - 1. Inlet - 2. Return For installation examples, see Handbook No 4 - Hydronic balancing with differential pressure controllers. STAF – see catalogue leaflet "STAF, STAF-SG". ### **Sizing** The diagram shows the lowest pressure drop required for the STAP valve to be within its working range at different flows. #### Example: Design flow 25 000 l/h, $\Delta pL = 34$ kPa and available differential pressure $\Delta H = 85$ kPa. - 1. Design flow (q) 25 000 l/h. - 2. Read the pressure drop $\Delta \text{pV}_{\text{\tiny min}}$ from the diagram. DN 65 $$\Delta$$ pV $_{\rm min}$ = 48 kPa DN 80 $\Delta$ pV $_{\rm min}$ = 21 kPa DN 100 $\Delta$ pV $_{\rm min}$ = 5 kPa - 3. Check that the $\Delta pL$ is within the setting range for these sizes. - **4.** Calculate required available differential pressure $\Delta H_{min}$ . At 25 000 l/h and fully open STAF the pressure drop is, DN 65 = 9 kPa, DN 80 = 4 kPa and DN 100 = 2 kPa. $$\Delta \mathbf{H}_{\min} = \Delta \mathbf{pV}_{\text{STAF}} + \Delta \mathbf{pL} + \Delta \mathbf{pV}_{\min}$$ DN 65: $$\Delta H_{min} = 9 + 34 + 48 = 91$$ kPa DN 80: $\Delta H_{min} = 4 + 34 + 21 = 59$ kPa DN 100: $\Delta H_{min} = 2 + 34 + 5 = 41$ kPa **5.** In order to optimise the control function of the STAP select the smallest possible valve, in this case DN 80. (DN 65 is not suitable since $\Delta H_{min} = 91$ kPa and available differential pressure 85 kPa only). $$\Delta H = \Delta pV_{STAF} + \Delta pL + \Delta pV$$ IMI Hydronic Engineering recommends the software HySelect for calculating the STAP size. HySelect can be downloaded from www.imi-hydronic.com. #### **Working range** | | Kv <sub>min</sub> | Kv <sub>nom</sub> | Kv <sub>m</sub> | q <sub>max</sub><br>[m³/h] | |--------|-------------------|-------------------|-----------------|----------------------------| | DN 65 | 1,4 | 25 | 36 | 25,5 | | DN 80 | 2,2 | 38 | 55 | 38,9 | | DN 100 | 4,4 | 77 | 110 | 77,8 | $Kv_{min} = m^3/h$ at a pressure drop of 1 bar and minimum opening corresponding to the p-band (+25%). $Kv_{nom} = m^3/h$ at a pressure drop of 1 bar and opening corresponding to the middle of the p-band ( $\Delta pL_{nom}$ ). $Kv_{m} = m^3/h$ at a pressure drop of 1 bar and maximum opening corresponding to the p-band (-25%). **Note!** The flow in the circuit is determined by its resistance, i.e. $Kv_c$ : $$q_{C} = Kv_{C} \sqrt{\Delta p I}$$ - $\mathbf{A.}\ \mathrm{Kv}_{\mathrm{min}}$ - **B.** Kv<sub>nom</sub> (Delivery setting) - C. Kv<sub>m</sub> - **D.** Working range $\Delta pL_{nom} \pm 25\%$ #### **Application examples** #### Stabilising the differential pressure across a riser with balancing valves ("Modular valve method") The "Modular valve method" is suitable when a plant is put into operation phase by phase. Install one differential pressure controller on every riser, so that each STAP controls one module. STAP keeps the differential pressure from the main pipe at a stable value out to the risers and circuits. STAD(STAF) downstream on the circuits guarantees that overflows do not occur. With STAP working as a modular valve, the whole plant does not need to be rebalanced when a new module is taken into operation. There is no need for balancing valves on the main pipes (except for diagnostic purposes), since the modular valves distribute the pressure out to the risers. - STAP reduces a big and variable $\Delta H$ to a suitable and stable $\Delta pL$ . - The set Kv-value in STAD(STAF) limits the flow in each circuit. - STAF is used for flow measuring, shut-off and connection of the capillary pipe. #### **Articles** #### **Flanged** 1 m capillary pipe and transition nipple with shut-off are included. #### PN 16, ISO 7005-2 | DN | Number of bolt holes | D | L | Н | Kv <sub>m</sub> | q <sub>max</sub><br>[m³/h] | Kg | EAN | Article No | |------------|----------------------|-----|-----|-----|-----------------|----------------------------|----|---------------|------------| | 20-80 k | Pa | | | | | | | | | | 65 | 4 | 185 | 290 | 321 | 36 | 25,5 | 22 | 7318793750402 | 52 265-065 | | 80 | 8 | 200 | 310 | 337 | 55 | 38,9 | 24 | 7318793750600 | 52 265-080 | | 100 | 8 | 220 | 350 | 350 | 110 | 77,8 | 29 | 7318793750808 | 52 265-090 | | 40-160 kPa | | | | | | | | | | | 65 | 4 | 185 | 290 | 321 | 36 | 25,5 | 22 | 7318793750501 | 52 265-165 | | 80 | 8 | 200 | 310 | 337 | 55 | 38,9 | 24 | 7318793750709 | 52 265-180 | | 100 | 8 | 220 | 350 | 350 | 110 | 77,8 | 29 | 7318793750907 | 52 265-190 | $\rightarrow$ = Flow direction $Kv_m = m^3/h$ at a pressure drop of 1 bar and maximum opening corresponding to the p-band (-25%). #### **Accessories** #### Measuring point STAP | EAN | Article No | |---------------|------------| | 7318793660602 | 52 265-205 | #### Measuring point, two-way For connection of capillary pipe while permitting simultaneous use of our balancing instrument. | EAN | Article No | |---------------|------------| | 7318793784100 | 52 179-200 | #### Capillary pipe connection with shut-off | EAN | Article No | |---------------|------------| | 7318793781604 | 52 265-206 | #### Capillary pipe | L | EAN | Article No | |-----|---------------|------------| | 1 m | 7318793661500 | 52 265-301 | #### Extension kit for capillary pipe Complete with connections for 6 mm pipe | EAN | Article No | |---------------|------------| | 7318793781505 | 52 265-212 | | EAN | Article No | |---------------|------------| | 7318793661609 | 52 265-302 |